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Abstract

The equivalent inclusion method (EIM) assuming linear elasticity is used to calculate the mechanical interactions between spherical rubber
particles in an amorphous matrix, as in a rubber toughened polymer. The influences of the various calculation parameters are examined and it
is shown that the method can provide reliable results with regard to the level of hydrostatic stress in the particles. Damage of the material is
simulated by replacing the most stressed particles by voids. Numerical simulations for several hundreds of interacting particles give
information on the kinetics and spatial organisation of the damage. It appears that, as the volume fraction of particles increases from 10
to 20%, the spatial configuration of the damage evolves from a localised to a diffuse mode. These results are discussed in relation to the
efficiency of rubber toughening. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although the rubber toughening of polymers is nowadays
common practice [1] for many polymers, the behaviour at
high strain rates still needs to be improved [2—4]. It is
known that cavitation in the rubber particles constitutes an
essential part of the mechanism of toughening [5,6] and it
has been established that the residual brittleness of the
amorphous polymer matrix can be due to an insufficient
volume fraction of rubber. It is then thought that mechanical
interactions between the rubber particles significantly
modify the local stress fields and thus influence the way
the material is damaged by cavitation [7]. Experiments
have shown that cavitation precedes plasticity at high strain
rates, owing to the increase of the matrix yield stress with
increasing strain rate [8]. Hence one can assume that at high
strain rates the elastic behaviour of the materials prevails
and interactions between rubber particles are primarily
responsible for the spatial organisation of the damage and
its kinetics. Nevertheless, at very high strain rates such as
those encountered at a crack tip during rapid crack propaga-
tion, the toughened material behaves as a glassy polymer
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and no whitening due to cavitation in the rubber particles is
observed [9]. In this range of strain rates, or at temperatures
close to or lower than the glassy transition temperature of
the rubber, there is indeed less mechanical contrast between
the elastic moduli of the matrix and the particles and this
case will not be examined here.

Numerical simulations may be expected to inform us
about the roles and synergy of various parameters, such as
the volume fraction or cavitation criteria, in damage
mechanisms. Therefore, we decided to perform some
computations of the mechanical interactions between
randomly distributed spherical rubber particles, in order to
analyse the kinetics of damage and the spatial correlation of
the damaged particles. It has been shown that cavitation is
triggered by a critical hydrostatic stress in the rubber phase,
the value of which could depend on the size of the rubber
particle [10]. Moreover, owing to the elastic instability aris-
ing after cavitation [11,12], a damaged rubber particle
behaves almost like a cavity. This allows us to simulate
the damage process by simply replacing the damaged parti-
cles by spherical cavities in the computations. In practice, it
is even possible to account for a low residual pressure acting
at the particle—matrix interface after cavitation, for instance
that induced by the surface tension in very small cavities, by
lowering the Young’s modulus of the rubber material in the
particle, while keeping the Poisson’s ratio unchanged to
maintain a compressible fluid like behaviour inside the
particle.
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The equivalent inclusion method (EIM) has been shown
to appropriately estimate the level of hydrostatic stress in
spherical interacting rubber particles in an amorphous
polymer matrix [13], assuming linear elasticity of both
materials and for at least two particles. On the other hand,
it has also been shown that the current formulation, based on
a Taylor series development of the eigenstrains, is less
appropriate to precisely evaluate the stress concentrations
in the presence of strong interactions between hetero-
geneities. The mean value of the hydrostatic stress in the
rubber particles is nevertheless expected to be precisely
computed, even in the case of strong mechanical interac-
tions, owing to the compressible fluid like behaviour of
rubber materials under such solicitation. Moreover, calcula-
tions using a 0 order expansion, i.e. combining Eshelby’s
well known solutions [14,15], which have the characteristic
that the stress fields are homogeneous inside a particle, are
suitable to accurately estimate the mean hydrostatic stress.
In a first approximation, the rubber material can in fact be
regarded as a compressible fluid on account of its very low
shear modulus to bulk modulus ratio. Consequently, the
shear stress is negligible and the hydrostatic stress almost
homogeneous [10]. The hydrostatic stress is in this case
proportional to the volume variation of a rubber particle
and therefore directly linked to the integral of the volume
strain in the particle. This stress thus results from an average
rather than a local value.

The following sections first describe the representative
volume elements (RVE) and boundary conditions used in
the numerical simulations. The reliability and accuracy of
the method are then checked for various parameters of the
computations. After having shown that the calculations give
suitable estimates of the levels of hydrostatic stress in the
rubber particles, the effect of the volume fraction of parti-
cles on the damage process is analysed. As the present
analysis focuses on results provided by the EIM and for
the sake of simplicity, the EIM is not presented in details
herein and the reader is invited to refer for instance to
Refs. [13,16,17].

2. Numerical simulation parameters
2.1. Construction of the representative volume elements

Since microscopic observations of the morphology of
rubber toughened polymers generally do not show any
particular spatial arrangement, we chose to randomly
distribute the spherical rubber particles in the polymer
matrix. In fact, as this random location was carried out by
computer and hence inevitably perturbed by a logic, one
should rigorously speak of a pseudo-random distribution.
A description of the algorithm we used to generate the
random numbers is given in numerical recipes [18].

A cubic volume of space is progressively filled with
identical spheres until they occupy a given volume fraction

of the cube. A cubic shape was chosen because it simplifies
determination of the boundary conditions generated by the
approximate solutions of the EIM. The coordinates of the
centre of each sphere are randomly drawn, while ensuring
there is no overlap with neighbouring particles. In non-
periodic distributions, this filling procedure leads to a
slightly higher volume fraction in the vicinity of the faces
of the cube due to the absence of neighbours outside the
cube. However, we found that this effect extends only over a
distance equal to approximately three times the radius of a
sphere. The volume we retained for the calculation of inter-
actions was therefore a cube of size smaller than the initial
volume where the spheres were distributed. A consequence
of this procedure is that the volume fraction finally obtained
is generally slightly lower than that initially expected. In
periodic distributions there is of course no such effect.

2.2. Procedure for computation of the interactions

It is generally not possible to take into account all the
particles in a single calculation. In the case of a group of
particles spatially organised over a long distance, it would
be best to include all the constitutive particles in the same
interaction calculation, so that the more distant particles can
interact through interposed neighbours. In practice, inter-
action computations are restricted to a spherical volume of
radius D, centred on the particle for which the computation
is currently being performed (Fig. 1). D represents the
distance of effective interaction.

In order to avoid any border effect due to the absence of
neighbouring particles, these calculations are only
performed for particles located in a cubic volume of size
at least 2D smaller than the cube where the spheres were
initially distributed (dark grey particles in Fig. 1). This
volume is assumed to be a representative volume element
of the rubber toughened material. The eigenstrains of a
particle located outside this RVE are determined by
averaging the values obtained each time this particle is
involved in a computation. If a particle has not been
involved in any interaction computation, then it is assigned
the mean values of the calculated eigenstrains for the
particles in the RVE.> Once the eigenstrains are known
for each particle, then it is possible to construct the stress
and strain fields at any point in the cube by superimposing
the effects of all the particles on the components of the fields
applied at infinity [13,16]. Again, a distance must be chosen
around each point for construction of the stress field. Since it
is obvious that the stress at a given point is more strongly
influenced by a close particle than a distant particle, relative
to the size of these particles, it would seem consistent to use
the same D value for construction of the stress field as for
calculation of the interactions.

% Of course, considering a non-periodic case, one could say that particles
not taken into account in any calculation appear to be inactive and hence
useless since the same D value is used for computation of the unknown
eigenstrains and for post-computation of the strain field.
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Fig. 1. Schematic RVE illustrating the differnet domains for computation
of the interactions.

Periodic distributions are generated in cubic volumes in a
classical way, so that a particle located just inside the RVE
on one side is located just outside on the opposite side. As
the distance of effective interaction is almost smaller than
the RVE, computations for a periodic distribution will be
called pseudo-periodic.

2.3. Boundary conditions

The stress/strain boundary conditions imposed on the
cube constituting the RVE are evaluated after having
computed the unknown eigenstrains and generally differ
from those imposed at infinity. The remote strain tensor
appears in the second equation of the linear system to be
solved [13,16]. However, the reconstructed stress fields on
the faces of the RVE have to be computed to determine the
exact boundary conditions. A random distribution of
spheres naturally ensures isotropic elastic behaviour for a
sufficiently large cube and it has been verified that several
hundred particles suffice to practically avoid anisotropy of
the RVE. The displacements and normal and tangential
stresses are numerically averaged at the surface of the
RVE to calculate the mean applied strain and stress tensors.
To obtain the desired stress boundary conditions on the
faces of the RVE, three preliminary calculations are neces-
sary to determine the remote strain to impose in the compu-
tation. In the objective of using available experimental data

Table 1
Elastic moduli used in the numerical simulations

to validate or not the present results, the following boundary
conditions relate exclusively to uniaxial tension.

2.4. Material characteristics

Typical elastic characteristics of a rubber toughened
polymer are given in Table 1. A particularity of these
materials resides in the strong contrast between the shear
moduli of the particles and matrix, whereas their bulk
moduli are similar. As far as we could see, the calculated
tendencies are relatively insensitive to small variations of
these moduli, so long as this contrast remains important.
The sensitivity to these parameters is for simplicity not
presented here. Using the values of Table 1, Eshelby’s
solution predicts the hydrostatic stress in a spherical rubber
particle to be P,q = 0.7647Tr(0)/3, where o is the remote
stress tensor. One notes that this solution assumes the
absence of interactions (one particle in an infinite medium)
and linear elastic behaviour of the two phases and is such
that the stress field is uniform in any ellipsoidal particle.

3. Assessment of the technique
3.1. Homogenised elastic moduli

A simple way to globally check the quality of the solution
provided by the EIM is to consider the homogenised elastic
moduli of the RVE. Although this method of calculation
was chosen to obtain information about the local stress
fields, the homogenised elastic moduli are the least one
can expect from the results. Indeed, the interest of this
method for studies of cavitation damage lies in a knowledge
of the relative values of the hydrostatic stress in particles,
more than its absolute values. Since the approximate
solution is a superposition of cinematically admissible
fields, the calculated elastic energy is expected to be always
greater than that corresponding to the exact solution. This is
due to the parasitic work resulting from stress discontinu-
ities at the interfaces, the approximate stress field being
statically inadmissible. Let us note, for an easier understand-
ing, that the solution provided by the EIM is approximate
for the boundary conditions imposed, here homogeneous,
but exact for the boundary conditions reconstructed from
the eigenstrains, conditions which include the stress
discontinuities at the interfaces.

Fig. 2 shows the results obtained using three classical
models, the Voigt and Reuss and Hashin and Shtrikman
[19,20] boundary models and the two phase self-consistent
model. As expected, the present numerical simulations give

Young’s modulus Poisson’s ratio

Bulk modulus

Shear modulus

Particles E, =1 MPa
Matrix E, =2GPa

v, = 0.49985
U = 035

K, = 1.11 GPa
K, = 2.22 GPa

My = 333.3 kPa
My = 740.7 MPa
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Fig. 2. Comparison of homogenised elastic moduli obtained by numerical
simulations taking into account the mechanical interactions with three of
the most commonly employed homogenisation models. (K) and (u)
denotes, respectively, the homogenised bulk and shear moduli, K, and
M denotes, respectively, the matrix bulk and shear moduli.

high homogenised moduli, which are nevertheless relatively
close to the upper boundary of Hashin and Shtrikman for all
volume fractions. The number of strong interactions
increases with increasing volume fraction. It is difficult to
rigorously assess the ability of the method to provide an
accurate result, though one may note that the estimations
of the EIM do not seem to degrade as the volume fraction
rises. Hence the EIM does not diverge as the number of
strong interactions increases.

A more precise analysis can be performed with the finite
element method (FEM), since it allows the modelling of
infinite periodic media. Although the EIM is not valid for
such media, these can still be approached by considering
lattices which contain a finite, but sufficiently large number
of particles. In Fig. 3, the hydrostatic stresses computed by

—O—FEM (periodic) 41.00

- O- -EIM (3*5*3)

m

<E>/E

v, (%)

Fig. 3. Comparison of the mean hydrostatic stresses, Pj,, and homogenised
Young’s moduli, (E), deduced from FEM and EIM computations, for parti-
cles forming a periodic medium with cubic symmetry. Right: representation
of the RVE, containing 125 particles, used for the EIM computations. vy
denotes the volume fraction of particles. Py denotes the hydrostatic stress
for a single particle in an infinite matrix in which Young’s modulus is E,.

the EIM in the central particle of a cubic array of 5 X5 X5
particles are compared to those obtained with the FEM in a
cubic symmetry, for volume fractions ranging from O to
30%. The corresponding homogenised Young’s moduli
under uniaxial tension are compared on the same figure.
The two solutions are in good agreement and the EIM
provides results in the range of accuracy of the FEM. One
notes in addition that the EIM solution is exact for volume
fractions close to 0%. Concerning the elastic moduli, the
maximum deviation from the predicted Poisson’s ratio is
less than 1.4%. Since the FEM results at low volume
fractions are close to the expected values, we can assume
that the FEM model is reliable, and hence likewise the EIM
at higher volume fractions. Owing to the mechanical inter-
actions induced by this particular periodicity, the Young’s
modulus predicted by the self-consistent model differs
significantly from that of the numerical simulations for
volume fractions of particles greater than approximately
15%.

In order to further normalise the results according to the
volume fraction of particles, the mean expected hydrostatic
stresses in the rubber particles Py may be estimated with a
two phase self-consistent model, i.e. by inserting the elastic
moduli of Fig. 2 into Eshelby’s solution. This leads to the
relation:

Pio(v) = (0.7647 + 0.2436v; + 0.1622v})Tr(0)/3 (1)

where v is the volume fraction of rubber particles in the
range 0—30%. The variation of Py, with v; is due to the
variation of the homogenised moduli of the material
surrounding the particles. Thus for example, the strain
boundary conditions being set, the required strain to obtain
a given stress increases as the Young’s modulus of the
material decreases. This explains a positive carry-over of
hydrostatic stresses in the rubber particles for randomly
interacting particles, in contrast to Eshelby’s model which
assumes non-interacting particles.

3.2. Influence of the computation parameters on the
hydrostatic stress distribution in particles

3.2.1. Order of expansion of the eigenstrains

In the presence of mechanical interactions, the hydro-
static stress in the rubber particles varies from one particle
to another and the proximity of other particles in fact signif-
icantly influences cavitation [21]. It is expected that the
poorest results will be obtained for the highest volume
fractions of particles which lead to the strongest inter-
actions. Fig. 4 compares calculations using zero and first
order expansions for pseudo-periodic and non-periodic
RVE with vy = 30%. The distributions are almost identical
for the two populations and the two orders of expansion.
Whatever the parameters of computation, the pseudo-
periodic and non-periodic RVE give similar results, while
the variation between the maximum values of the average
hydrostatic stress for these four calculations does not exceed
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Fig. 4. Influence of the distance of effective interaction and the order of
Taylor’s expansions on the distribution of the hydrostatic stress, Py, in
rubber particles, for particle volume fractions of approximately 30%, in a
pseudo-periodic and a non-periodic medium. Py is the self-consistent esti-
mate of the mean hydrostatic stress given by Eq. (1). The distributions
of the quality indicator, J, of the solutions are given in the insert (see
Appendix A).

2%. These results therefore seem to be only slightly
sensitive to the order of expansion. As the average values
are very close to those of Py in Eq. (1), one may deduce that
shielding effects compensate for the stress concentrations
due to interactions.

The quality criterion J, a quantity proposed by Fond et al.
[13] and based on the stress discontinuities at the interface
of each heterogeneity, ranges from 0.2 to 0.7 for the zero
order expansions. These values may be compared with those
obtained for two particles under uniaxial tension, where
exact solutions are known [13]. In this particular configura-
tion, J is equal to about 0.3 for an error of the mean
hydrostatic stress of less than 2% (Fig. 5). Since the value
of the quality criterion J is closely related to the stress
discontinuities, we can expect it to increase with the number
and proximity of neighbouring particles. The range of
values obtained for randomly distributed particles in this
respect gives confidence in the predicted results.

It is noticeable that first order calculations, although
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Fig. 5. Correlation between the quality indicators and accuracy of the
computations for two rubber particles aligned along the tensile axis. The
relative error in Py is obtained by comparing values from the EIM with
exact values given in Ref. [13]. The J quantity, based on the stress jump at
the particle/matrix interface, is defined in Appendix A.
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Fig. 6. Influence of the distance of effective interaction on the distribution
of the hydrostatic stress, Py, in rubber particles for a volume fraction of 1%.
The values are derived from computations using zero order expansions, or
in one case by simple overlapping of the elastic fields corresponding to
single particles in an infinite medium. Py is the self-consistent estimate of
the mean hydrostatic stress given by Eq. (1). d is the distance of effec-
tive interaction, a the radii of the particles and v; the volume fraction of
particles.

much more time consuming, generally do not offer better
results than zero order calculations, with regard to the
hydrostatic stress. Moreover, the J distributions of first
order expansions are broader than those of zero order expan-
sions and there is indeed no reason for the present formula-
tion of the EIM to converge with increasing order of
expansion [13]. Since rubber behaves like a compressible
fluid, use of zero order calculations would thus seem to be
more appropriate to determine the hydrostatic stress in
randomly distributed rubber particles, as this forces the
stress field to be almost uniform in the particles.

3.2.2. Distance of effective interaction

Fig. 6 shows the influence on the hydrostatic stress distri-
bution of the chosen distance of effective interaction D for a
1% volume fraction of particles. In such a dilute medium,
only a few particles can interact with their neighbours when
D is smaller than about 3 times the radius of a particle.
Hence initially almost all particles exhibit a hydrostatic
stress equal to that of a single particle in an infinite medium.
As the distance D increases, more and more particles inter-
act with their neighbours and the distribution broadens.
However, beyond a distance of effective interaction equal
to about five times the radius of a particle, the shape of the
distribution for a given population of particles ceases to
evolve with further increase in D. This suggests that each
particle interacts only with its closest neighbours, which
tend to screen out the influence of more distant ones. The
same tendency was also observed at higher volume
fractions, but for shorter distances D (Fig. 7).

Also presented in Figs. 6 and 7 are the results obtained by
simple superposition of the perturbation fields generated by
the particles, assuming the eigenstrains to be those of
Eshelby’s solution (non-interacting particles). This straight-
forward method, which does not require the solution of a
system of equations but does not really take into account
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Fig. 7. Influence of the distance of effective interaction on the distribution
of the hydrostatic stress in rubber particles for a volume fraction of 20%.
The values are derived from two computations using zero order expansions
and one based on simple overlapping of the elastic fields corresponding to
single particles in an infinite medium. Py is the self-consistent estimate of
the mean hydrostatic stress given by Eq. (1). d is the distance of effective
interaction, a the radii of the particles and v; the volume fraction of
particles.

interactions, gives tendencies similar to those of the EIM
with as expected slightly narrower distributions of the
hydrostatic stress. Since our objective was to accurately
determine the higher stresses in rubber particles in order
to study the spatial organisation of the cavitation in the
early stages of damage, we preferred the EIM. Nevertheless,
a comparison of these two methods is of interest. In fact,
whereas it cannot be proved that the EIM does not diverge
with increasing volume fraction of the particles, there is no
reason for the overlapping method to diverge with increas-
ing volume fraction. Once again, the fact that the tendencies
are the same gives confidence in the calculated results.

At vy = 1% the average hydrostatic stress in the particles
lies within =0.5% of the estimate of Eq. (1) and at v; =
20% within £0.7% of this estimate. Concerning particle
interactions, this would appear to confirm that shielding
compensates the stress concentration effects. However, the
EIM is not sufficiently accurate to explain more precisely
the origin of the slight differences between the computed
mean values and those estimated from Eq. (1).

3.3. Conclusions concerning the computational method

In summary, zero order expansions of the numerical
simulations seem to be adequate to evaluate the distribution
of hydrostatic stress in rubber particles, while periodic and
pseudo-periodic computations give results analogous to
those obtained for non-periodic populations. Variation of
the distance of effective interaction shows that beyond a
certain value, which depends on the volume fraction of
particles, the distribution does not evolve further. The
accuracy of the method, with regard to the hydrostatic stress
inside the particles, cannot be checked with exact solutions
for several hundreds of particles, but all tests we performed
led us to believe that this accuracy is of the order of a few
percent.

4. Evolution of the damage in rubber toughened
polymers

4.1. Distribution of the hydrostatic stress in particles

Fig. 8 illustrates the influence of the volume fraction of
particles v; on the distribution of the hydrostatic stress in
particles. As expected, the distributions are broader for
higher volume fractions, while the average values always
lie close to the estimate of Eq. (1). This indicates that
assuming linear elasticity, the cavitation process will be
more progressive for high than for low volume fractions
of particles. The prediction is consistent with many experi-
mental observations which show that a volume fraction of at
least 15% is typically required for efficient toughening of
polymers with pure rubber particles.

4.2. Cavitation model and normalisation of results

As mentioned in Section 1, it is now generally accepted
that the level of hydrostatic stress in the particles is the key
parameter triggering cavitation. Our model supposes that all
particles have the same resistance to cavitation and that the
most stressed particle in the RVE, with respect to the mean
positive hydrostatic stress, undergoes cavitation. Once this
most stressed particle has been determined, any other
particle located outside the RVE and presenting an equal
or higher internal hydrostatic stress is considered to have
cavitated too. A new interaction computation can then be
carried out, in which the mechanical characteristics of all
the cavitated particles are replaced by those of a damaged
particle. When replacing these particles by cavities, the
model treats the extreme case of soft rubbers, where the
interface tractions after cavitation are negligible for parti-
cles typically larger than 100 nm, owing to the elastic
instability related to cavitation and the small effect of
surface tension inside the cavities [10]. Calculations were
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Fig. 8. Influence of the volume fraction of rubber particles on the distribu-
tion of the hydrostatic stress in particles for computations using zero order
expansions and a distance of effective interaction equal to ten times the
radius of a particle. Py is the self-consistent estimate of the mean hydro-
static stress given by Eq. (1). d is the distance of effective interaction, a the
radii of the particles and v¢ the volume fraction of particles.
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Fig. 9. Schematic representation of an analysis of the geometrical correla-
tion between the positions of cavitated particles, as a function of: (a) the
distance r and (b) the angle 6 with the tensile direction.

carried out at zero order with D = 5a, where a is the radius
of a particle. The boundary conditions were revised at each
iteration to ensure that the RVE remained under pure
uniaxial tension.

The spatial organisation of the cavitation was charac-
terised by letting each cavitated or non-cavitated particle
give rise to a radial and angular analysis of its neighbour-
hood, as schematised in Fig. 9. Once again, the distance of
effective interaction D was used to select only the closest
neighbours in the angular analysis. Averaging of the results
over all particles involved allowed eight functions to be
constructed at each iteration of the computations:

C(rla) and C,,(0), representing, respectively, the
probability of finding any particle at a distance r/a from
the centre of any other particle, or in a direction forming
an angle 6 with respect to the tensile direction.

C,y(rla) and C,4(0), representing respectively the
probability of finding a damaged particle at a distance
r/a from the centre of any particle, or in a direction form-
ing an angle 6 with respect to the tensile direction.
C,q(rla) and C,,(0), representing, respectively, the
probability of finding any particle at a distance #/a from
the centre of a damaged particle, or in a direction forming
an angle 6 with respect to the tensile direction.

Cyi(rla) and C4(0), representing, respectively, the
probability of finding a damaged particle at a distance
r/a from the centre of another damaged particle, or in a
direction forming an angle 6 with respect to the tensile
direction.

4.3. Spatial organisation of the damage

Fig. 10 depicts, for five different RVE and particle
volume fractions of 1, 5, 10, 20 and 30%, the spatial
organisation of the damage when 15% of the particles are
damaged under uniaxial tension. It appears that for volume
fractions of up to 10%, the damaged particles tend to be
arranged in clusters, which are mostly oriented in planes

ey

Fig. 10. Visualisation of the damaged particles (grey) among the non-
damaged particles (transparent) for 15% damaged particles and volume
fractions of (a) 1%, (b) 5%, (c) 10%, (d) 20% and (e) 30%, under uniaxial
tension. The last damaged particle is represented by the symbol %

perpendicular to the direction of traction. At volume frac-
tions of 20 and 30% this organisation tends to disappear.

Statistical analyses were performed to characterise more
objectively the organisation and progress of cavitation and
Fig. 11 shows typical results for a 5% particle volume fraction.
The shape of the curves for r/a = 1 is due to spatial obstruc-
tion by the particle in question. The higher probability of find-
ing a particle close to a damaged one indicates that the particle
interactions favour cavitation in clusters. This effect is very
marked at the beginning of the damage and progressively
disappears for obvious reasons as the proportion of damaged
particles increases. The interactions also favour cavitation in
planes perpendicular to the tensile direction (6 = 90°), parti-
cularly for low volume fractions of damaged particles. The
maximum at approximately 70° is related to the randomness of
the population and the relatively limited number of particles
included in the simulation. Finally, the evolution of the spatial
correlation for different volume fractions, presented in Fig. 12
for a 13% fraction of damaged particles, shows clearly that
the tendency to spatial organisation decreases as the volume
fraction of particles increases.

5. Discussions

No proof of the convergence of the EIM has been proposed
to date and there exist only a few reference solutions for this
kind of analysis. Nevertheless, an evaluation of the precision
of our calculations using the quality indicator of Fond et al.
[13] allows us to consider that the method gives reliable values
for the hydrostatic stress in rubber particles. As a result of the
kinematic admissibility of the approximate solutions of the
EIM, the homogenised elastic moduli are always over-esti-
mated. One might suppose that this would lead to a slight
shift of the mean values of the hydrostatic stress in particles,
but the averages obtained are in good agreement with models
of the self-consistent type. Moreover, the interest of this
method for studies of cavitation damage lies in a knowledge
of the relative values of the hydrostatic stress in particles, more
than its absolute values.
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Fig. 11. Effect of the interactions between particles on the cavitation mechanism: statistical analysis illustrating the proximity and angular correlations of
cavitation for a 5% volume fraction of particles. The quantities Cyy, C,g, Cg4,, and C,, are defined in Section 4.2.

The distribution of the hydrostatic stress in particles
reflects a strong influence of the volume fraction of parti-
cles. At low volume fractions, the damage process favours
the formation of clusters of cavitated particles, which
behave like pseudo-crazes and weaken the material.
Conversely, the progressive nature of the damage could
constitute one of the elements responsible for rubber tough-
ening at high volume fractions. A typical evolution of the
number of damaged particles as a function of the applied
stress is shown in Fig. 13. Since the overall curves are
monotonously increasing, there is no evidence of any
avalanche effect, within the accuracy of the computations.
A fortiori, no avalanche effect is to be expected in the
presence of dissipation in the matrix, i.e. viscoelasticity,
plasticity or viscoplasticity.

The chronology of the particle damage is more sensitive

6- —o—v,=10%
b - 0= v,=20%
\ Ay =30%

C,(r/a)/C(r/a)

(=]

to the relative positions of the particles than to their state,
i.e. whether they have cavitated or not. Thus, numerical
simulations carried out by damaging the five most stressed
particles in the RVE at each iteration presented a chronology
of cavitation almost identical to those in which the particles
were damaged one by one. Furthermore, it was found that the
cavitation sequence could be almost deduced from the
hydrostatic stress distribution obtained before damage of any
particle. Hence the cavitation of a particle does not strongly
affect the local interactions with its neighbours.

6. Conclusions

Since at high strain rates or low temperatures, the elastic
behaviour can be uncoupled from viscosity and plasticity, it
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%
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=
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Fig. 12. Effect of the interactions between particles on the cavitation mechanism: statistical analysis illustrating the proximity and angular correlations of
cavitation for 13% damaged particles. The quantities C,y, C,4, Cg4,, and C,, are defined in Section 4.2.
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Fig. 13. Evolution of the fraction of damaged particles with the macro-
scopic stress o33 for various volume fractions and under uniaxial tension
(o is chosen arbitrarily to be the stress for which the first cavitation
occurs). v¢ denotes the volume fraction of particles.

is possible to highlight the influence of the volume fraction
of rubber particles on the distribution of the hydrostatic
stress in particles and the kinetics of cavitation by means
of the present numerical simulations. The diffuse nature of
the damage for volume fractions of over 20% could have a
shielding effect on the propagation of cracks and crazes.
Microscopic observations indeed reveal that cavitated
particles can constitute sites of attraction which stop crazes
[3] and rubber toughening is then more effective as it
deviates the paths of the crazes.

On the other hand, the presence of a sufficient volume
fraction of particles significantly lowers the macroscopic
yield stress, owing to the stress concentrations at the parti-
cle—matrix interfaces. At low macroscopic stress, the local
energy density is low and thus the energy release rates asso-
ciated with the propagation of micro-crazes are likewise
low. This could influence the competition between the
genesis, propagation and coalescence of crazes and the
formation of dilatational bands. Such competition could
explain very simply the ductile—brittle transition related to
changes in the volume fraction of rubber toughening parti-
cles. It is unfortunately not possible to use the current form
of the EIM to study the competition between cavitation in
the rubber particles and the formation of crazes or shear
bands, since this requires a more precise evaluation of the
stress concentrations at the particle—matrix interfaces.
Nevertheless, a way of improving the interaction computa-
tions by using variational principles has been proposed by
Fond and Gilormini [22]. To be able to further examine this
question, it will be necessary to have tools which take into
account the non-linear behaviour of the phases, or at least of
the matrix. Some methods of analysis have been put forward
recently, as for example by Ref. [23], for these kinds of
morphology and behaviour, but the number of heterogene-
ities must still be reduced in accordance with the capacity of
present day computers.

Finally, in a random distribution the probability of
encountering spheres organised in space, for instance

aligned in a plane, on a large scale is low, since one consid-
ers a relatively small number of particles, typically a few
thousand in our numerical simulations. Consequently, it is
not certain that our conclusions still hold for such rare
geometrical configurations.

Appendix A
A.l. The equivalent inclusion method principle

An inclusion is a domain of the matrix which is subjected
to a stress free strain, also called eigenstrain, in other words,
a thermal dilatation, plastic strain or phase transformation
strain which would not induce any stress in the inclusion if it
were not embedded in a matrix. An inhomogeneity is a
domain with elastic constants different from those of the
matrix. Stresses arise from incompatibility of the deforma-
tion between the inclusion and the surrounding matrix,
assuming perfect adhesion at the inclusion—matrix inter-
face. ‘Eigenstress fields are created by the incompatibility
of eigenstrains.’

The EIM has been described in detail elsewhere [13—17]
and only a brief summary will be given below. Bold char-
acters denote tensors and vectors and italics exact functions.
For the sake of clarity, the eigenstrain tensors B’ take values
in the pth inclusion and are zero outside. The general
equivalence equation is then:

N
Cx|L® + D Dix —x,)BU(x)
q=1

N
=" ) + D DUx — x,)BY(x) — B'(x) (AL.1)

g=1

for every point X = (x,y,z) inside an inhomogeneity (left
hand side) or inclusion (right hand side), where N is the
number of inclusions and x, = (x,, y,, z,) the centre of the
gth inclusion. D” is a fourth order tensor representing
the influence functions, which are the effects of B’ on the
strains at point X. ao(x) denotes the remote strain tensor, the
strain which would prevail in the absence of an inhomo-
geneity. C” and C° are the stiffness tensors of the pth
inhomogeneity and the matrix, respectively, and for our
purposes C” is assumed to be uniform in the inhomogeneities.

In order to use analytical solutions, the eigenstrain Bf is
approximated by a Taylor series, which for numerical calcu-
lations must be truncated to the order 7. The subscript j
refers to the component of the strain tensor, using the
reduced indices (11— 1,22 —2,33 —3,23 = 4,13 —
5,12 — 6). This leads us to define the eigenstrain tensors
BP(a, b, c) as follows:

0=a+b+c=T

Bo= Y

a,b,c

BY(a,b,o)(x — x,)'(v — ,) (2 — 3,)°

(A1.2)
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where a, b and c are positive integers or zero such that 0 =
a+ b+ c=T. The remote strain is approximated in the
same way by a Taylor series and it should be noted that
the remote strain field &° can be non-uniform:

O=a+b+c=T

g~ ¥

a,b,c

€”(a,b,o)(x = x,)'(v = 3,)" (2 = 2)°

(A1.3)

If a uniform strain field is applied at infinity, efp (a,b,c)
vanishes whenever a + b+ c# 0. The equivalence
equation may then be rewritten:
0=d' +b' +c'=T

D Cp(x)[ €”(a, b, c)(x)

a' b

N
+ > DUd’ b, c)(x — x,)BUa’. b, c’)]
q=1

0=d' +b' +c'=T
~ D CO[ €”(a, b, ¢)(x)

a' b c'

N
+ > DUa" b, c)x — x,)BUd’,b'.c") — B(a.b, c)(x)]
q=1

(Al.4)
for all (a, b, c). The tensors D(a’,b’,c’) are analytically
known. However, as Eq. (A1.4) cannot generally be solved
analytically, D?(a’, b’, ¢') must also be approximated by a
Taylor series in order to obtain a linear system of equations.
This leads us to define the fourth order tensor
kaq(a, b,c,a',b’,c") as follows:
kaq(a, b,c,a',b', "Bl b',c")

= i o W a—ZCquk(x - xq)|XpBZ(a',b/,c') (A1.5)

Whereas all strain functions give the exact solution for a
single inclusion in an infinite medium, the problem of inter-
acting inhomogeneities leads to approximate solutions
because the strains induced by a Bf»’ (a,b,c) distribution
cannot be exactly expressed by a Taylor series with a finite
T value at every point. Therefore, the equality between the
stress inside an inhomogeneity p and that inside the
corresponding equivalent inclusion, which induces an
eigenstrain, is rewritten in the form:

N 0=d +b' +c'<T

6 6
2 Ci;(ej(-)”(a, b,c) + Z Z Z
=

k=1 g=1 a',b' ¢!
x DX (a,b,c,a’,b’, "B, b’ c/))
jk ’ L] £ ) k ’ £l
6 of o 6 N 0=d +b +c'=T
= ZCU(ejp(a,b, c) + Z Z
=1
Xkaq(a, b, c,a',b’,c')BZ(a/,bl, ) — Bf(a’ b, C))

(A1.6)

for all (a, b, ¢) and for every i and p. The compliance tensors
are assumed to be uniform. The Bf»’ (a,b,c) are the initial
unknowns and Eq. (A1.6) gives an approximate solution
of the mechanical interaction problem. The number of
unknowns per inhomogeneity is 6 for a truncation order T
of zero, 24 for T =1, 60 for T =2, 120 for T =3, ...

At this stage, it should be noted that the left hand side of
Eq. (Al.4), the heterogeneous problem, involves non-
equilibrated stress fields, while the right hand side, the
homogeneous equivalent problem, deals with equilibrated
stress fields. The right hand side of this equation is in fact
the sum of exact solutions for the inclusion problem. Since
C” # C°, the left hand side generally involves non-equili-
brated stress fields due to the normal stress discontinuities at
the interface and non-zero body forces which remain for
truncated Taylor series. Considering now Eq. (A1.6), the
left hand side concerns non-equilibrated stress fields for
the same two reasons, while on the right hand side the
estimation of D by truncated Taylor series also mostly
leads to non-equilibrated stress fields. The exact solution
is obtained when the stress field on the left hand side is
equilibrated.

Since the present computations were applied to isotropic
materials, the C;; tensors depend only on the shear and bulk
moduli. It should be noticed that the particular case of
cavities (w =k = 0), Eq. (A1.6) has no single solution
due to the vanishing right hand term and therefore leads to
‘impotent eigenstrains’. It is nevertheless possible to derive
specific equations for cavities. A simple way of avoiding
numerical problems without restricting the potential of our
software was adopted here: the elastic constants of the
cavities were set to 10° times those of the matrix. Comput-
ing with double precision reals makes the error introduced
by this simplification negligible compared to that resulting
from truncation of the Taylor series.

A.2. Quality of the solution

The solution given by the EIM Eq. (A1.6) is kinemati-
cally admissible, accounts for the behaviour of the material
and fulfils the boundary conditions, but it is not statically
admissible for the following reasons. A polynomial
eigenstrain of degree N induces a polynomial eigenstrain
of the same degree inside an inclusion. Therefore, any
polynomial applied strain can be exactly counterbalanced
by polynomial eigenstrains in the equivalence equation. In
contrast, the eigenstrains outside the inclusion, which
vanish at infinity, involve functions of the type x* y*
(Vx> +y* + 72" where n < —(a+ b + ¢ + 3), and such
terms cannot be exactly counterbalanced by a truncated
Taylor series. These ‘external’ strains act as applied strains
arising from the surrounding interacting inhomogeneities.
Two quantities based on the amplitude of the stress discon-
tinuities and of the self induced body forces, calculated from
the left hand side of Eq. (A1.4) have been proposed in Ref.
[13] to assess the quality of the solution. The first one is
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based on the stress jump at the inhomogeneity interface and
presented below. The second one is based on the
equilibrium related to parasitic body forces, related to the
approximation of Eq. (Al.6), inside the inhomogeneity.
Since the latter is not useful for voids or rubber particles
for which the inner stress fields tend to be uniform, it is not
detailed herein.

The strain field induced by a eigenstrain Bf (a,b,c) in a
domain {2, is continuous across the interface with another
domain (2, The approximate solution follows the stress
gradients as well as possible by means of terms varying
with a Taylor expans1on around the centre r, of (2, i.e. a
sum of terms x yb/ . Although all terms are then
correctly counterbalanced at the centre of an inhomo-
geneity, stress discontinuities a’dls are expected to appear
at the interface:

di + -
ot =0, — 0

(A1.7)

where ;" and o, denote the components of the stress
tensor at the external and internal faces, respectively,
corresponding to the left hand side of Eq. (A1.4). These
discontinuities clearly increase as the distances between
inhomogeneities decrease and as the difference between
the material elastic constants (C” — C) increases. Therefore,
a quantity J, derived from the stress discontinuities provides
an estimate of the quality of the approximate solution. At the
interface of a given inhomogeneity g, we propose to use a
positive mean value based on the amplitude of the stress
discontinuity. Since o increases with C” Cg, the
displacement vector is employed as a normalisatlon weight.
Denoting by u, the displacement vector at the centre of the
inhomogeneity q of radius a,, J, is defined by:

.= (A1.8)

) J (™ -m)||(u — u,)|ds

4Tra3(e o

where n is the normal vector outward the interface and Sq is

the surface of 2,. J, is a dimensionless quantity, which is
always positive and zero for the exact solution.
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